Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift

نویسنده

  • Glenn P. Juday
چکیده

Since the mid 1970s, Interior Alaska white spruce trees experienced markedly lower growth than during the 19th and early 20th centuries. This observation raises the question of forest persistence on certain sites of lowland central and eastern Alaska. We analyzed white spruce growth across a 36-site network (540 trees) on three major river floodplains in boreal Alaska along a longitudinal gradient from eastern Interior to the southwest tree limit to test for the presence of tree growth patterns and climate sensitivities. Chronologies are compared for temperature sensitivity at both stand and individual tree levels, using data from Bethel, McGrath, and Fairbanks NWS stations during the common period of 1952– 2001. Cross-dated stand-level ring width chronologies indicate three regions of common signal in tree growth across the gradient. Temperature sensitivity of standand individual-tree chronologies is spatially coherent. Most downriver chronologies correlate positively with spring mean monthly temperatures (MMT) at Bethel, midand upriver chronologies correlate negatively with MMT of May and previous year July at either McGrath or Fairbanks, and an area in between is a mixed population of positive and negative responders. In downriver positive responders, recent increases from suboptimal cool temperatures accelerated tree growth, while in midand upriver negative responders, recent increases from optimal or above-optimal temperatures decreased growth. Fairbanks negative responders are also negatively correlated with a 200-yr index of recorded and reconstructed Fairbanks summer temperatures, and recent sustained record high summer temperatures are associated with the lowest relative growth. Until the 1940s, absolute growth rate of negative responders was greater than positive responders, but from the 1970s the positive responders grew more. These results explain why northern ring width samples can display opposite temperature sensitivity and contribute to understanding recent ‘‘divergence’’ or loss of temperature sensitivity in a changing climate. We find that July MMT and annual precipitation at Fairbanks are now outside the limits that previously characterized the North American distribution of white spruce, and are near the reported physiological limits of the species. Our results of the spatial and temporal change of white spruce temperature sensitivity provide strong empirical evidence of previously proposed early stage biome shift in boreal Alaska due to clear climatic causes. Already, western Alaska, previously extending to tree limit, has become the optimum climate region for the species. With modest additional warming widespread tree death will be unavoidable on warmer lowland interior sites, where persistence of white spruce is unlikely. 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest

In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of int...

متن کامل

Changes in forest productivity across Alaska consistent with biome shift.

Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska...

متن کامل

Mechanisms of Soil Carbon Stabilization in Black Spruce Forests of Interior Alaska: Soil Temperature, Soil Water, and Wildfire

and Overview: The likely direction of change in soil organic carbon (SOC) in the boreal forest biome, which harbors roughly 22% of the global soil carbon pool, is of marked concern because climate warming is projected to be greatest in high latitudes and temperature is the cardinal determinant of soil C mineralization. Moreover, the majority of boreal forest SOC is harbored in surficial organic...

متن کامل

Clearcutting and Site Preparation, but Not Planting, Promoted Early Tree Regeneration in Boreal Alaska

The stand initiation stage decisively influences future forest structure and composition, particularly in the boreal forest which is a stand replacement disturbance driven system. In boreal Alaska, the conventional forest management paradigm has focused on the production of large-dimension timber, particularly white spruce (Picea glauca). However, energy generation and heating from wood is incr...

متن کامل

Carbon balance of the taiga forest within Alaska: present and future

Forest biomass, rates of production, and carbon dynamics are a function of climate, plant species present, and the structure of the soil organic and mineral layers. Inventory data from the U.S. Forest Service (USFS) Inventory Analysis Unit was used to develop estimates of the land area represented by the major overstory species at various age-classes. The CENTURY model was then used to develop ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015